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Abstract
We show that Okamoto’s classical solutions to PVI constructed from a seed
solution of Gauss’ hypergeometric equation can be derived very simply from
the Ward ansätze for ASDYM connections.
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1. The anti-self-dual Yang–Mills equation and PVI

Consider complexified Minkowski space CM, the four complex dimensional space with
complex local coordinates (w, z, w̃, z̃) and metric

ds2 = 2(dz ⊗ dz̃ − dw ⊗ dw̃).

The anti-self-dual Yang–Mills (ASDYM) equation is the condition on an sl(2, C) connection
d + � that its curvature 2-form should satisfy F = −�F ; alternatively, that the two operators

L = ζ(∂w + �w) − ∂z̃ − �z̃ M = ζ(∂z + �z) − ∂w̃ − �w̃

should commute for any value of the complex parameter ζ . The sixth Painlevé equation (PVI)

is equivalent to the reduction of this system under the conformal symmetries generated by the
three conformal Killing vectors

X1 = −z∂z − w∂w, X2 = −w̃∂w̃ − z̃∂z̃, X3 = z∂z + w̃∂w̃

(Mason and Woodhouse 1996, section 7.4). We can make explicit the connection between
the ASDYM equation and PVI through the corresponding isomonodromy problem. If the
connection is invariant, then, after a gauge transformation, � can be written in the form

� = A
dw

w
+ B

dz

z
+ Ã

dw̃

w̃
+ B̃

dz̃

z̃
, (1)
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where the matrices A,B, Ã, B̃ are functions of t = zz̃/ww̃ alone. In this case, the ASDYM
equation is equivalent to the compatibility of the five linear equations

Lg = 0, Mg = 0, X1g − ζ∂ζ g = 0, X2g + ζ∂ζ g = 0, X3g = 0

in the unknown g(w, z, w̃, z̃) with values in SL(2, C). A solution then determines a flat
meromorphic connection d − (dg)g−1 on a bundle over CM × CP1. By picking out the
dζ -component of dg, we see that, at a fixed point of Minkowksi space, g is the fundamental
solution of the Fuchsian system

dg

dζ
=

(
A + B̃

ζ + r
+

B + Ã

ζ + s
− Ã + B̃

ζ

)
g

where r = w/z̃ and s = z/w̃. This has four regular singularities, at −r,−s, 0 and ∞, with
cross-ratio t = s/r; as t varies the system is deformed isomonodromically, and so we obtain a
solution of the Schlesinger equations, and hence of PVI. The Painlevé parameters are expressed
in terms of four invariants of the deformations, given by the traces of

(A + B̃)2, (B + Ã)2, (A + B)2, (Ã + B̃)2.

2. Ward ansätze and wave equations

The identification of PVI with a reduction of the ASDYM equation opens the door to the
construction of solutions by twistor methods. Elsewhere, we shall show how this method
generalizes in a very straightforward way to the general isomonodromy problem.

In the twistor construction, solutions of the ASDYM equation correspond to holomorphic
bundles over a neighbourhood of a line in CP3. The bundle is required to have a trivial
restriction to the line. It can be characterized by its SL(2, C)-valued patching matrix T
between trivializations over two open sets, V0, V∞, whose intersection meets the line in an
annulus. In operational terms, the solution is recovered by expressing T = T (λ, µ, ζ ) in
terms of inhomogeneous coordinates λ,µ, ζ on CP3 and by finding a Birkhoff factorization

T (w + ζ z̃, z + ζ w̃, ζ ) = H∞H−1
0

for each fixed spacetime point labelled by w, z, w̃, z̃. With h0 = H0|ζ=0 and h∞ = H∞|ζ=∞,
the gauge potential is given by

�z̃ = h−1
0 ∂z̃h0, �w̃ = h−1

0 ∂w̃h0, �w = h−1
∞ ∂wh∞, �z = h−1

∞ ∂zh∞.

Thus the twistor method reduces the solution of the ASDYM equation to a Riemann–
Hilbert problem (Ward and Wells 1990, section 8). In general, this is intractable, but the
splitting is known if the twistor bundle is the extension of a line bundle O(k) by another,
O(−k), the Ward ansatz (Ward 1981). In this case, the transition matrix is

Tk =
(

ζ k φ

0 ζ−k

)
,

where k is a non-negative integer. The entries are functions of λ,µ, ζ ; when they are expressed
in terms of w, z, w̃, z̃, ζ , they are therefore constant along the vector fields

l = ζ∂w − ∂z̃, m = ζ∂z − ∂w̃.

Hence, if φ has Laurent expansion

φ =
∞∑

i=−∞
φiζ

i,
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then the coefficients φi must satisfy

∂φi

∂w
= ∂φi+1

∂z̃
,

∂φi

∂z
= ∂φi+1

∂w̃
.

Therefore, each φi satisfies the complex wave equation

∂2φi

∂w∂w̃
= ∂2φi

∂z∂z̃
.

Our aim is to find suitable φi starting from a single seed solution to Gauss’ hypergeometric
equation, and then let k label members of a hierarchy of solutions to PVI derived from it
together with solutions of contiguous equations. By direct calculation, we have the following
lemma.

Lemma 1. Let t = zz̃/ww̃, and let ′ denote differentiation with respect to t. Then

ψ = z̃c−1y

waw̃b

satisfies the wave equation if and only if y satisfies the hypergeometric equation with
parameters (a, b, c); that is

t (1 − t)y ′′ + (c − (a + b + 1)t)y ′ − aby = 0.

If ψ̂ = z̃ĉ−1ŷ/wâw̃b̂, with â = a + 1, b̂ = b, ĉ = c + 1, then the equations

∂ψ

∂w
= ∂ψ̂

∂z̃
,

∂ψ

∂z
= ∂ψ̂

∂w̃

are compatible if and only if y satisfies the hypergeometric equation with parameters (a, b, c).
In this case, ŷ satisfies the hypergeometric equation with parameters (â, b̂, ĉ) and

−bŷ − t ŷ ′ = y ′, cŷ + t ŷ ′ = −ay − ty ′.

By starting with a given a solution y to the hypergeometric equation with parameters
(a, b, c), we can construct a Laurent series for φ with the required properties, with the
coefficients

φ0 = ψ, φi+1 = φ̂i .

Each stage involves integration, and so φ and the transition matrix are not uniquely determined
by the seed. However, the holomorphic bundle and the gauge-class of � are independent of the
choices made. The φi (−∞ < i < ∞) are expressed in terms of a sequence of hypergeometric
functions yi with parameters (ai, bi, ci), which are related by

−biyi+1 − ty ′
i+1 = y ′

i , ciyi+1 + ty ′
i+1 = −aiy − ty ′

i ,

where ai = a + i, bi = b and ci = c + i.
We reconstruct the Yang–Mills field � by following the steps in Ward and Wells (1990,

section 8.2). Put

Y =




yk−1 yk−2 . . . y0

yk−2
. . . y−1

...
. . .

...

y0 y−1 . . . y1−k


 .

Then the matrix M in theorem 8.2.2 of Ward and Wells (1990) is

M = z̃c+k−2

wa+k−1w̃b
DYD,
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where D is the diagonal matrix with diagonal entries 1, r, r2, . . . , rk−1. So we can read off the
corresponding Yang–Mills field from the theorem. After a gauge transformation by(

rk/2 0
0 r−k/2

)
,

it is in the form (1). We put

e = (Y−1)11, f = (Y−1)1k, g = (Y−1)kk.

Then

A = 1

2f

(
tf ′ + (k − a)f −2te′ + 2(k + c − 2)e

0 −tf ′ + (a − k)f

)

B = 1

2f

(−tf ′ 2t2e′ − 2bte

0 tf ′

)

Ã = 1

2f

(
bf − tf ′ 0

−2g′ tf ′ − bf

)

B̃ = 1

2f

(
tf ′ + (1 − c − k)f 0

2tg′ − 2(a − k + 1)g −tf ′ − (1 − c − k)f

)
.

We then have a solution of Schlesinger’s equations, and hence of PVI. The corresponding
parameters can be read off from the equivariance of the holomorphic bundle, and hence from
the derivatives of Tk along X1 − ζ∂ζ ,X2 + ζ∂ζ ,X3 and X4 = −X1 − X2 − X3. We have

X1φ − ζ∂ζφ = aφ

and hence X1Tk − ζ∂ζ Tk = θ∞Tk − Tkθ0, where the θ are the constant diagonal matrices

θ∞ = 1

2

(
a − k 0

0 −a + k

)
θ0 = 1

2

(
a + k 0

0 −a − k

)
.

The twistor theory then implies that θ∞ is conjugate to the Higgs field A + B, and hence that
tr(A + B)2 = 1

2 (a − k)2, as also follows directly from the expressions for A and B above. One
similarly finds that

tr(Ã + B)2 = 1
2b2, tr(A + B̃)2 = 1

2 (a − c + 1)2, tr(Ã + B̃)2 = 1
2 (b − c + 1 − k)2.

The solutions we have obtained here correspond to those in Okamoto (1987), expressed
there in terms of determinants involving isomonodromic τ -functions. The general theory of
hypergeometric solutions to PVI is reviewed in Clarkson (2006).

3. Concluding remarks

The Ward ansätze are more general than those presented here. One can multiply the diagonal
terms of the transition matrix by an arbitrarily chosen nonzero holomorphic function and its
inverse, respectively. This has the effect of adding to the spacetime derivatives in the wave
equation and the recursion relations the components of a 1-form

α
dw

w
+ β

dz

z
+ α̃

dw̃

w̃
+ β̃

dz̃

z̃

where α, β, α̃, β̃ are constant. In this case the seed is a P-function (a solution of Riemann’s
differential equation). However, the P-functions that arise can be expressed in terms of
hypergeometric functions, and the solutions of PVI that one obtains are trivially related to the
ones derived here.
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One final remark is that the solutions to the ASDYM equation derived from the Ward
ansätze are dense (in the Weierstrass sense) in the space of all solutions (Ivancovich et al
1990). However, the classical hypergeometric solutions are not dense in the solutions of PVI.
The reason is that although the ASDYM connection corresponding to a general solution of
PVI can be approximated to arbitrary accuracy by a connection derived from a Ward ansatz,
this connection will not generally have exact invariance under the conformal transformations
generated by X1, X2 and X3. Nonetheless, the approximating connections are derived from
the solution of linear equations (the wave equation and recursion relations), albeit ones in four
independent variables, not one. This may provide a useful way to understand properties of
general Painlevé transcendents.
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